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Abstract We present a small object sensitive method for object detection. Our method is
built based on SSD (Single Shot MultiBox Detector (Liu et al. 2016)), a simple but effective
deep neural network for image object detection. The discrete nature of anchor mechanism
used in SSD, however, may cause misdetection for the small objects located at gaps between
the anchor boxes. SSD performs better for small object detection after circular shifts of the
input image. Therefore, auxiliary feature maps are generated by conducting circular shifts
over lower extra feature maps in SSD for small-object detection, which is equivalent to
shifting the objects in order to fit the locations of anchor boxes. We call our proposed sys-
tem Shifted SSD. Moreover, pinpoint accuracy of localization is of vital importance to small
objects detection. Hence, two novel methods called Smooth NMS and IoU-Prediction mod-
ule are proposed to obtain more precise locations. Then for video sequences, we generate
trajectory hypothesis to obtain predicted locations in a new frame for further improved per-
formance. Experiments conducted on PASCAL VOC 2007, along with MS COCO, KITTI
and our small object video datasets, validate that both mAP and recall are improved with
different degrees and the speed is almost the same as SSD.
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1 Introduction

For traditional computer vision tasks, hand-crafted features such as HOG [39] and SIFT [28]
may be less robust to the variances in the objects. The combination of these hand-crafted
features causes the increasing of the dimension of data feature space which is inefficient.
Feature selection method [23] only uses a subset of the original features and [22] learns
a robust representation of data from ground truth information using the latent data struc-
ture. Recently, deep learning, which learns feature representation from data automatically,
has been wildly used in domains of image classification [15, 36], semantic segmentation
[27, 42], human pose recovery [18, 19, 43] and other computer vision fields [44]. In the
context of deep neural networks for object detection, the current state-of-the-art methods
could be roughly divided into region proposals based methods [10, 11, 13, 14, 34, 41]
or direct regression based methods like YOLO [32, 33], SSD [25] and [21, 38, 46]. The
region proposals based methods divide the task into two stages: the first is proposal gen-
erating process and the second is classification and localization process for proposals. The
straightforward regression methods directly regress the class and location of some fixed
predefined boxes. Although these two kinds of methods work well on large objects, they
perform unsatisfyingly on small object detection. When it comes to small object detection,
the region proposals based methods tend to increase the size of input images [3], add context
information [45]. It may achieve higher accuracy, but the sacrifice of speed is intolerable
especially based on the two stages paradigm. Although the direct regression based methods
are extremely fast, they may struggle with relatively worse performance. Compared with
other methods, SSD achieves high accuracy and fast speed at the same time. However, it is
limited in detecting small objects and we do not know exactly what the problems are and
how to solve them.

In this paper, we first investigate why SSD does not perform well on detecting small
objects and three main problems are observed: (a) Because of anchor box mechanism, SSD
only obtains the weak translation invariance for small object detection. If the objects move
slightly in the image, the detection results will change accordingly. (b)When detecting small
objects, SSD struggles with outputting more precise locations. The most precisely localized
boxes generated by SSD may not have the highest confidences. Hence after the post-process
like non-maximum suppression (NMS), these precisely located boxes will be suppressed.
(c) SSD has a severe overfitting issue for detecting small objects.

To solve these problems, we propose Shifted SSD for small-object detection. Firstly, we
find that the weak translation invariance issue is eased by circularly shifting the input image
before feeded to SSD. To reduce the computation redundancy, we shift the lower level fea-
ture maps circularly for prediction instead of shifting the input images. Then we combine
the detections produced by shifted feature maps and the original detections from SSD to
get the final results. Secondly, to obtain more precise locations for small objects, we pro-
pose two novel methods named as Smooth NMS (SNMS) and IoU-Prediction respectively.
The post-process called NMS in SSD suppresses a lot of accurately localized detections
with slightly lower confidence scores. Therefore, SNMS utilizes these accurately local-
ized detections to generate finer results. While only classification information is regarded
as confidence score for NMS in SSD, IoU-Prediction provides localization accuracy infor-
mation which is combined with classification information for NMS or SNMS. Lastly, we
apply our Shifted SSD to object detection in videos as an extension. When SSD is used for
small-object detection in videos, it will miss some objects within every few frames which
are detected in the previous frames. We notice that some detections whose confidences are
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lower than the threshold (weak detections) are also positive results. Therefore, another main
problem of miss-detection in videos is the prior setting confidence threshold. So we use tra-
jectory hypothesis to reduce the threshold selectively and increase the continuity of object
detection in videos.

Our main contributions can be summarized as follows:

(i) We quantitively analyze the problems of SSD in detecting small object and propose the
Shifted SSD, which shifts feature maps to ease the impact of the discreteness of anchor
boxes method.

(ii) The proposed Shifted SSD achieves a better performance along with the proposed
SNMS and IoU-Prediction methods for more accurate localization. To further improve its
capability to utilize temporal information, we introduce trajectory hypothesis to increase
the continuity of object detection in videos.

(iii) Experiments conducted on PASCAL VOC 2007, KITTI, MS COCO databases
along with our small object video database, validate the effectiveness of our proposed
method.

The rest of this paper is organized as followings. We discuss the related work in Section 2
and analyze problems of SSD in detecting small objects in Section 3. Then in Section 4, our
Shifted SSD is proposed to solve the issues mentioned in Section 3. In Section 5 we show
how to use both weak and strong detections in sequential detection. Implementation details
and experimental results are provided in Section 6. We conclude in Section 7.

2 Related work

The region proposals based method R-CNN [11] uses Selective Search to generate propos-
als, afterwards the image is cropped based on them and CNN is used to classify the proposals.
To speed up, SPP-Net [13] and Fast R-CNN [10] use RoI pooling approach to compute
feature maps only once for all the proposals generated from a single image. Furthermore,
Faster R-CNN [34] design a architecture to generate region proposals and share the com-
putational features with the classification CNN. In order to obtain more precise localization
results, LocNet [9] design a network to predict conditional probabilities of each row and
column in the marginal region of an object.

YOLO and SSD only look once on the input images and directly regress the class and
location information, so they are extremely fast. Unlike region based methods that gener-
ate proposals using image informations, they rely on a set of predefined fixed boxes and
predict their class and location information. As shown in [12, 27], lower-level feature maps
capture more fine details of the objects which are more accurate for localization, while top
layers extract high-level features and contain more global context information [26] which
are beneficial for classification. SSD achieves higher accuracy and almost the same speed
compared with YOLO because both low-level and high-level feature maps are utilized for
detecting objects with different sizes without fully connected layers.

To the best of our knowledge, there are few region proposals based methods proposed for
small object detection. [3] follows the R-CNN paradigm, adding more context information
and using fine grained layer to generate region proposals compared to RPN [34], however it
is extremely slow. [45] uses the à trous trick [4] and concatenates the features from different
layers to solve the collapsing bins problem in small objects detection, which only runs at
0.5 fps.
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3 Problems analysis

We first investigate why SSD does not perform well on detecting small objects (some quan-
titative results are shown in Fig. 1) and then carefully design experiments to quantify these
disadvantages. Because SSD uses lower layers to detect smaller objects, we define small
objects as that with area smaller than the area of the biggest anchor box on the lowest
prediction layer (e.g. conv4 3).

3.1 Weak translation invariance

Similar to Faster RCNN [34], SSD uses anchor box mechanism to obtain a set of fixed
default boxes, in which the input image is divided into grids according to the size of each
feature maps used for prediction. The center of each cell represents the center of certain
anchor boxes predicted on the corresponding feature map. SSD utilizes different layers for
prediction and put multiple anchor boxes with different sizes on these prediction layers.
To detect small objects, the scales of anchor boxes on lower feature maps should be set
relatively small, which however will lead to a problem that if the scale is too small, the
anchor boxes on a certain feature map can not cover the entire input image after mapping
(Fig. 2) and the objects located in the gap between two default boxes couldn’t be detected.
Although the localization problem could be refined by regression, the improvement may be
limited. Even if the anchor boxes could cover the input image, the probability of missing
detection is still high when the objects locate near the grid lines. What if we shift the objects
by half size of the cell so that the objects near the grid line will move to the center of the cell?
in order to shift the objects to avoid the problems mentioned above and combine the original
detections, we circularly shift the input image before input to SSD and the performances
are saliently improved. Some examples corresponding to this problem are shown in Fig. 1.
As mentioned in [34], anchor box mechanism is translation invariant, however we find that
anchor box mechanism only obtain weak translation invariance for small object detection.

Fig. 1 Problems of SSD in detecting small objects on VOC 2007 dataset. First row: Examples of weak
translation invariance. The left image of each pair represents the results of the original image and the right
image represents the results of the circularly shifted image. The bold green bounding boxes are the targets
detected in a image but missing in another image. Confidence score and iou matched with the ground truth
are denoted as “conf” and “iou”. Second row: Examples of Reverse out. Red bounding boxes are the outputs
of SSD which have the highest confidences after NMS while green bounding boxes are the most accurate
detections before NMS
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Fig. 2 Motivations of the proposed Shifted SSD. Left: the original image. Right: the image shifted by half
size of the cell

To quantify the phenomenon mentioned above, we first circularly shift all the resized
test images in Pascal VOC 2007 by 4 and 8 pixels1 in four directions, notated as left, down,
left up and right down2 respectively. Then we input these images into the original SSD300∗
model. If the changing amplitude of confidence or IoU (intersection over union) of the
detection is greater than a threshold (e.g 0.1), we consider that the detection result of this
ground truth is changed significantly after shifting. Last, we calculate the ratio between the
number of significantly changed detections and the number of ground truth objects.

Table 1 shows corresponding data on Pascal VOC 2007 that the translation invariance of
small objects is weaker than big objects, which means that if the input images are shifted a
bit then nearly 20% of the detection results will be changed significantly.

3.2 Reverse out

During training, SSD matches each ground truth object with the best overlapped anchor
box and any anchor boxes whose IoU is larger than a threshold (e.g 0.5). Ideally, we would
expect the best overlapped anchor box will have the best prediction during testing. However,
based on our observation, the best overlapped anchor box usually has the highest confidence
but not the most accurate location as shown in Fig. 1 bottom.3 None maximum suppress
(NMS) inhibits the detections with lower confidences which lead to relatively inaccurate
outputs. To quantify this phenomenon, we output all the detections before NMS and find
the detections with the most accurate locations. Then we compare them with the detections
(which have the highest confidences) after NMS. If they are different for the same ground
truth object, it means the output detections do not have the highest confidence and the most
accurate locations. Last we count the number of the output detections whose confidences
and locations are not the best at the same time.

Our experiment shows that almost 57% of the output detections do not have the most
accurate locations among all the output detections and especially for small objects.

1For SSD300∗ model, the step between anchor boxes is 8 pixels on the lowest prediction layer and 16 on the
next layer. So 4 and 8 pixels are the half length of the grid.
2For simplicity, left shifted direction is treated equivalently to right shifted direction.
3Small objects have little visualization differences in localization accuracy. For the clarity of visualization ,
we just illustrate examples of big objects on Reverse out phenomenon.
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Table 1 Quantification of the
weak translation invariance
phenomenon

Shift step Changed ratio

Shift Direction

left down left-up right-down

4(small only) 0.26 0.20 0.31 0.30

4(big only) 0.20 0.15 0.24 0.25

8(small only) 0.28 0.21 0.34 0.34

8(big only) 0.20 0.15 0.25 0.26

We calculate the Changed ratio
after shifting the input images
along four directions on VOC
2007 dataset. Shift step indicates
the circularly shifted pixels while
small only means only small
objects are considered

3.3 Overfitting

SSD uses multiple layers for prediction and the lowest layer is responsible for the small
objects. In Table 2 we summarize the approximate4 performance of the lowest prediction
layer in the original SSD on both Pascal VOC 2007 and KITTI datasets for small and big
objects respectively. Note that for small-object detection, we only use the lowest prediction
layer and all the prediction layers except for the lowest layer for big objects detection.

Table 2 shows that SSD performs well on big objects for both train and test sets. However,
it performs poorly on small objects, especially on KITTI. The difference of mAP between
train and test sets is over 70%. So we can say that SSD has severe overfitting problem on
small-object detection.

4 Shifted SSD

Circular shift means all the rows or columns of feature maps are shifted to the next position
and the final ones are moved to the first position. Direct circular shifting of the input image
could reduce miss-detection. However, this will introduce redundant computation since all
the convolution need to be computed once more. In this section, we present Shifted SSD
model on lower level feature maps instead of the input image. We first discuss how to ease
the problems we find in Section 2. Then, we show the model of Shifted SSD. Last we
introduce the training procedure.

4.1 Which layers to shift

We first try to use denser boxes for small object detection to ease weak translation invariance
by using smaller pooling stride. But the result is not satisfied (As shown in Table 4 column
Stride). So we propose our Shifted SSD model which circular shift the feature maps to
realise the same effect of circular shift input image as mentioned in Section 3.1. We establish
two simple principles to determine which layers to circular shift.

– Principle 1. After shifting, new features should be generated. Where there is no new
features, there is no new detections.

4Because we do not know the exact matching between ground truth target and the predictions of the lowest
layer.
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Table 2 Performance on both
train and test phase on VOC
2007 and KITTI datasets

Dataset Objects size Phase mAP Overfit

VOC 2007 small train 60.2% 23.7%

test 36.5%

big train 93.6% 10.6%

test 83.0%

KITTI small train 83.3% 65.1%

test 18.2%

big train 85.0% 9.9%

test 75.1%

Detections and ground truth
targets are divided into small and
big sets according to the area of
their bounding boxes

– Principle 2. Operation should be on lower layers of the feature maps to detect small-
object and reduce computation redundancy.

We build our model based on SSD which uses layers conv4 3, conv7, conv8 2, conv9 2,
conv10 2, and conv11 2 to predict object locations and class confidences. Considering the
principle 2, we use lower feature maps conv4 3 and conv7 to generate shifted layers. How-
ever, the convolution kernel size used to predict location and confidence is 3 × 3 × p and
the stride is 1 on these two layers. Based on the principle 1, direct circular shift of the input
of these layers will not generate new features and will get the same detections as just shift-
ing locations. But if we circularly shift the input of a layer whose convolution stride is 2 or
other even number by an odd number smaller than the stride, new features will be generated.
Therefore, we can circularly shift the nearest convolution layers whose stride is 2 before
conv4 3 and conv7. Then we replicate all the layers between them. The network architec-
tures of the shifted SSD and SSD are shown in Fig. 4. What should be noted is that only
shifted layers before conv4 3 are shown for simplicity.

4.2 How to get more precise location

According to Section 3.2, there are plenty of accurately localized detections with lower con-
fidence scores generated by SSD, especially for small objects. Due to the NMS procedure,
these accurate detections are suppressed. Thus we propose two methods called SNMS and
IoU-Prediction to refine the final locations and confidence scores respectively.

Smooth NMS We first propose a modified NMS method called smooth NMS (SNMS) in
which not only the detection with highest confidence but also detections with top k confi-
dences which are suppressed by the detection with highest confidence are considered. The
final output of smooth NMS is the average among them :

boxj = 1

k

∑k

i=1
deti , confi >= confj ∗ thre (1)

where boxj is the averaged location [xmin, ymin, xmax, ymax] of the SNMS output, deti
are the detections [xmin, ymin, xmax, ymax] suppressed by NMS resj (including resj ),
confj is the confidence of NMS result resj , and thre is a threshold (e.g 0.7) selecting the
detections suppressed by resj .

IOU-Prediction To solve the problem that the detection with most accurate location but
does not correspond to the highest confidence, we add another regression branch called
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IoU-Prediction regression which is similar to the location and confidence regression. IoU-
Prediction tries to predict the IoU between an output box of SSD and a ground truth box.
The predicted IoU information will be used for choosing better detection boxes with both
higher confidences and more accurate locations. A new score P ∗

det is proposed for NMS or
SNMS process and P ∗

det is defined as

P ∗
det = Pcls · PIoU (2)

where Pcls is the confidence score for each box in original SSD and PIoU is the predicted
IoU for each box from the IoU-Prediction.

While softmax loss function is used for classification and smooth L1 loss function is
used for localization, we use Euclidean loss function for IoU-Prediction which is defined as

Liou pred = 1

2P

P∑

i=1

∥∥∥IoU
gt
i − IoU

pred
i

∥∥∥
2

2
(3)

where P is the number of matched positive anchor boxes during training, IoU
gt
i denotes

the real IoU between the i-th matched detection box with corresponding ground truth box
and IoU

pred
i indicates the predicted IoU between the i-th matched detection box with

corresponding ground truth box. The multi-task loss of Shifted SSD is extended to

L = 1

P + N
Lconf + α

1

P
Lloc + β

1

P
Liou pred (4)

where N is the number of the negative anchor boxes. We find that both α and β are robust
thus we empirically set both of them to 1. Figure 3 shows the structures of original SSD
prediction and modified SSD prediction with IoU regression respectively.

4.3 How to ease overfitting

There are many ways to prevent overfitting in machine learning such as data augmen-
tation, early stopping, model complexity reducing and drop out. SSD uses strong data
augmentation strategy which can boost performance by 10% [25]. Here we use the same
data augmentation as in SSD. Dropout [37] has been wildly used in region proposal based
method like Fast RCNN and it achieves great performance in avoiding overfitting. To ease

Fig. 3 Illustration of the proposed IoU-Prediction regression manner. Module inside bold blue box indicates
the predictions in SSD while the Module inside bold dashed green box indicates the predictions in Shifted
SSD with IoU regression
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overfitting of SSD when detecting small objects, we apply channel-wise max-drop out pro-
posed in [30] on conv4 3 before small object prediction. Max-drop layer selectively drops
the maximum activations in the feature map.

4.4 Model

We adopt SSD architecture as base model and add an auxiliary shifted branch in the network
to produce extra detections. Based on the previous discussion, the inputs of pool3 (stride is
2) is circularly shifted in SSD to get new feature maps and all the layers between pool3 and
conv4 3 are copied to get complementary feature maps conv4 3 s for prediction. Figure 4
shows SSD model (top) and the Shifted SSD model (bottom).

The shift layer circularly shifts the input layer by s elements, where s is the input param-
eter. Other added layers have exactly the same settings as corresponding layers in SSD like
Siamese Networks [2]. For example, the parameters of conv4 1 s convolution layer are the
same as that of conv4 1. Note that the default boxes on conv4 3 s have to shift their center
by half of the cell size, other parameters such as scales and aspect ratios are the same as
SSD.

4.5 Model training

There are two methods to obtain the weights of the added layers, say, sharing with
corresponding layers in SSD or not.

For the shared method, we just share the weights between the pre-trained SSD and our
model without extra training. For example, the added conv4 3 s share the parameters with
conv4 3 in SSD. It is simple and can eliminate the impact of randomness of fine tuning.

For the unshared method, we initialise the added shifted layers with the corresponding
layers in the pre-trained VGG16 model and follow the same training policy as SSD. For

Fig. 4 Architecture of SSD (top) and Shifted SSD (bottom). A circular shift branch is added on the side of
SSD. The circular shift layer circularly shift the input feature maps
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anchor boxes and ground truth targets matching, we first find the most overlapped default
box with each ground truth target and then any anchor boxes whose IoU with a ground
truth is larger than a threshold (e.g 0.5). All the matched anchor boxes are treated as posi-
tive samples. Then we use hard negative mining strategy to select negative samples among
the unmatched anchors. Last, we minimize the joint loss defined in equation (4). Table 3
compares these two methods and as can be seen, the unshared method is better.

5 Extension to sequential detection

As mentioned above, for object detection in videos, sometimes, SSD may achieve success-
ful detection in previous frames but miss in later frames with the same detection threshold.
However, many of those missed targets were detected with lower confidence than the thresh-
old. So we use sequence information to predict the prior locations of objects to improve
detection. We try methods based on trajectory hypothesis [29, 31] and KCF [16].

5.1 How to use weak detections

Detections whose confidence scores are lower than a threshold (e.g 0.3) are defined as
weak detections. In order to ease the problem that every few frames SSD will miss some
objects which are detected in the previous frames, we propose to use trajectory hypothesis
to selectively loose the confidence threshold.

Matching strategy To generate trajectory hypothesis, we first find the nearest neighbor
of each object with the biggest IoU in the previous frames like [29]. All the detections in the
first frame whose detection confidence is above the threshold are treated as the start points
of different trajectories. When it comes a new frame, we find the neighbors of the detec-
tions in the previous frames and this frame and push these neighbors into the corresponding
trajectories. The unmatched detections in the previous frames are just duplicated into the
trajectory to keep it continuous. In Fig. 5, the process of generating trajectory hypothesis is
illustrated.

Poly fit predictions After obtaining a set of trajectories, poly fit method is used to pre-
dict the bounding boxes of each trajectory in new frames. Since the prior motion mode
of the objects is unknown, we use linear and duplicated methods to predict the location
[xmin, ymin, xmax, ymax]. Duplicated method means we just use the detections of the last
frames as predictions.

Threshold loosing In a new frame, detections whose confidence scores are above the
threshold are directly set as true positives. Then we compute the IoU between the detections
whose confidence is a little bit lower than the threshold with each trajectory. The detections
are set as positive and pushed to a trajectory if the IoU with that trajectory is bigger than the
IoU threshold.

Table 3 Comparison between
different training methods Dataset methods mAP Dataset methods mAP

VOC shared 77.9 KITTI shared 67.9

unshared 77.9 unshared 68.0Results on VOC 2007 and KITTI
(Pedestrian) are shown
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Fig. 5 Illustration of generating trajectory hypothesis

5.2 KCF prediction method

We also try KCF tracker [16] to get the predictions in a new frame. KCF trains a regressor
using ground truth and regress the class of candidate windows in the new frame. For frame
t, the results of frame t-1 are used as initial locations, and we train a KCF tracker for each
object in frame t-1. Then these trackers are used to predict the locations of each objects in
frame t. Finally, Shifted SSD is used to get detections and all the detections whose confi-
dence is above the threshold is treated as positives. Then we loose the threshold to get the
final results.

However, the bounding boxes produced by KCF tracker may deviate largely from ground
truth. It will increase the number of false positives. On the other hand, though KCF is fast
for single target tracking, it is relatively slow for multi-objects tracking. Assuming KCF
runs at hundreds of frames-per-second and there are 10 objects in a frame, it will take 0.1
seconds to get the predictions. This is even slower than SSD.

6 Experiment results

Experiments on VOC 2007 [5], KITTI [8], MS COCO [24] and our Prisoner Monitor dataset
are based on VGG16 [36], which is pre-trained on the ILSVRC CLS-LOC dataset [35].
The full testing code is built on Caffe [20] and all experiments are conducted on a Titan X
(Pascal).

6.1 Pascal VOC 2007 results

Experiment settings We first train an original SSD on the VOC 2007 trainval set and
VOC2012 trainval set with 300 × 300 input size with the same settings of [25]. After that
we finetune our Shifted SSD using the unshared training method with batch size of 24 and
started the learning rate at 10−4 for the first 20k iterations. Then learning rate decreased to
10−5 for another 20k iterations.
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Results Analysis Table 4 compares the performance of adding shifted layers before conv7
in different directions along with using Max-drop, SNMS and denser boxes. By adding left
up shifted layers we can improve mAP by 0.4% higher than SSD. We also validate that
denser anchor boxes method will not help improving performance but significantly reduces
the result by using smaller stride on layer pool3 and the speed is much slower.

Similar performance can be seeing with Max-drop added on conv7. We argue that it is
because that PASCAL VOC 2007 dataset do not have severe overfitting problem on small
objects. In the mean time, using Smooth NMS will improve mAP by 0.6%.

Finally, we add left up shifted layers before conv7 along with Smooth NMSwithout using
max-drop and get mAP of 78.3%, 0.8% higher than SSD. Besides, the speed is almost the
same with 81 fps on SSD and 77 fps on Shifted SSD on a Titan X (Pascal). Table 5 shows
the comparisons with other one-stage methods. We can see that our Shifted SSD gains a
relatively large improvements for classes with small objects comparing with SSD. Note that
our Shifted SSD is tested with input size of 300 × 300 while DSSD [7] and RON [21] are
tested with input size around 320 × 320.

We also use the detection analysis tool from [6] to compare recall with different confi-
dences of SSD and Shifted SSD without SNMS. Figure 6 shows that Shifted SSD has larger
recall than SSD and the average recall is 1.3% higher. However, mAP has little improve-
ment on PASCAL VOC 2007. The following reasons may cause this. First, we just use
the same settings as SSD300 where the smallest scale of default boxes is set relatively big
in SSD for the overall results. Second, because of the data augmentation of training, SSD
treats small parts of the objects as ground truth. Though Shifted SSD reduces the missing
rate and improve recall, it also adds many false positives which are considered as ground
truth during training and that is why recall is improved much larger than mAP. Third, as
mentioned in [17], our effort to improve small objects detection may diluted by the easier
cases. Figure 7 illustrates some detection results of proposed Shifted SSD on small object
detection. Results of adding shifted layers before conv4 3 are similar with conv7 with
slower speed.

6.2 MS COCO results

We also test Shifted SSD on MS COCO which contains more challenging small objects
using shared training method without retraining due to limited time.

Table 4 VOC 2007 results
Shift Direction Drop SNMS Stride mAP

left down lt-up rt-dn

� 77.7

� 77.7

� 77.9

� 77.8

� 77.6

� 78.1

� 70.4

� � 78.3

SSD300∗ Result 77.5

Last row means the original
SSD300∗ [25], Drop denotes
Max-drop, Stride means the
stride of pool3 is 1 and column
SNMS indicates Smooth NMS.
The lt-up and rt-dn indicate the
shift directions in left up and
right down respectively

The relative best results among
the listed methods are shown in
bold
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Table 5 Comparison with other one-stage methods on PASCAL VOC 2007

Method mAP aeroplane bird boat bottle cow fps

SSD300� 77.5 79.5 76.0 69.6 50.5 81.5 81 HZ

DeNet-101 [38] 77.1 − − − − − 33 HZ

RON320 [21] 74.2 75.7 74.8 66.1 53.2 79.5 15 HZ

DSSD321 [7] 78.6 81.9 80.5 68.4 53.9 83.5 10 HZ

Ours 78.3 79.2 77.4 70.4 51.2 82.8 77 HZ

Due to the limited space, only ap for classes with relative small size are shown. Note that our model is trained
with input size of 300 × 300 which is slightly small than the input size of the others
1The speed of the listed methods are tested on a Titan X GPU while ours and SSD300� are tested on a Titan
X (pascal) GPU

The relative best results among the listed methods are shown in bold

Experiment settings we use the pre-trained SSD300∗ model [25] which is trained on
trainval35k [1] as base network without fine tuning. Due to limited time, we did not add
max-drop and re-train the model.

Results analysis We compare the performance of adding different directions of shifted
layers before conv4 3 and conv7. Table 6 shows that by adding shifted layers before conv4 3
and combine right and down shifted direction, we get mAP of 43.5%, 0.5% higher than
SSD. Adding shifted layers before conv7 has the similar effect. SNMS can improve mAP
significantly under more strict IoU thresholds. Finally, we combine shifted layers along with
SNMS and get mAP of 43.7% and 32.8%, 0.7% and 0.9% higher than the original SSD
under the IoU thresholds of 0.5 and 0.75 respectively.

Fig. 6 Recall of SSD and Shifted SSD on VOC 2007
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Fig. 7 Small object detection results of Shifted SSD on PASCAL VOC 2007. Image pairs are illustrated
in which the left image with green bounding boxes is generated by SSD, while the right with red bounding
boxes is generated by Shifted SSD. The first four rows are improved examples when using Shifted SSD and
the last row is the failure examples

6.3 KITTI results

Compared with VOC 2007, KITTI contains more small objects especially for the category
of pedestrian and typical image size in KITTI is about 1250 × 375.

Table 6 COCO results. Last
row denotes the original
SSD300∗ [25] result

Shift Directions SNMS mAP

left down lt-dn rt-up 0.5 0.75

� 43.3 27.9

� 43.2 27.8

� 43.4 27.9

� 43.5 28.0

� � 43.7 28.5

SSD300∗ Result 43.0 27.6

The mAP under IoU thresholds
of 0.5 and 0.75 is reported

The relative best results among
the listed methods are shown in
bold
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Experiment settings We follow the protocols in [40] and split the trainval set which con-
tains 7481 images into the training set (3682) and the validation set (3799). Our Shifted
SSD only tests on pedestrian and cyclist classes. Firstly, an original SSD is trained on
the training set with 1216 × 384 input images using conv4 3, conv7, conv6 2, conv7 2,
conv8 2 and conv9 2 for prediction. For prior boxes settings, we implement k-means clus-
tering method on the training boxes as the same procedure in [33] and set aspect ratios as
{0.3, 0.4, 0.5, 0.7, 1.0}. To fit the small object detection, we set default boxes with scale
smin = 0.08 on conv4 3 and smax = 0.7 on conv9 2. The scale of the i-th layer is calculated
as same as [25]:

si = smin + (i − 1) × (smax − smin)

max − 1
, i ∈ [2, max − 1] (5)

Learning rate is set to 10−4 for the first 30k and decreased to 10−5 for another 10k. After
that we finetune our Shifted SSD with the batch size of 8 and initialize the learning rate as
10−4 for the first 10k iterations. Then learning rate is decreased to 10−5 for another 10k
iterations. For max-drop layer, we try different drop probabilities and experimentally set it
to 0.1. Lastly, we finetune the IoU-Prediction module by freezing all the weights of Shifted
SSD model.

Results analysis Table 7 shows that adding the shifted layer, the Max-drop, the IoU-
Prediction module and the SNMS will improve performances respectively. By adding the
shifted layer, we observe a large improvement under an IoU threshold of 0.7, demonstrating
that adding shifted branch will obtain more accurate localization results. Smooth NMS will
significantly improveperformanceby1.4%under an IoU thresholdof 0.7.As shown inTable 2,
KITTI dataset has a severe overfitting problem on small object detection and the result that
adding max-drop on conv4 3 improves performance confirms our observation again.

Finallywecombine shifted layers,max-drop andSNMS,obtaining amAPof70.8%,which
is 3.3% higher than the original SSD under an IoU threshold of 0.5. In addition, Shifted SSD
obtain a mAP of 46.1% under an IoU threshold of 0.7, which is 5.6% higher than the origi-
nal SSD. Speed drops slightly from 34 fps to 31 fps. Comparing with Sub-CNN [41], our
shifted SSD outperforms it by 0.8% with single input size and is faster for dozens of times.

6.4 Prison monitor results

The Prison Monitor dataset is a set of videos collected from a prison. It contains several
sequences in different scenes. The task is to monitor all the prisoners in each sequence and

Table 7 KITTI results. The
shown mAP is under class
“Pedestrian”

Shift Directions Drop SNMS IoU mAP

right down lt-dn rt-up 0.5 0.7

� 67.4 41.4
� 68.0 41.9

� 67.7 41.4
� 67.5 41.5
� � 69.4 44.7
� � � 70.6 46.1
� � � � 70.8 47.0

SSD 1216x38 67.5 40.5

Sub-CNN [41] 70.0 −

Last row indicates the Sub-CNN
result, Drop denotes Max-drop,
column SNMS indicates Smooth
NMS and IoU means IoU-
Prediction. The lt-dn and rt-up
indicate the shift directions in left
down and right up respectively.
The mAP under IoU thresholds
of 0.5 and 0.7 is reported

The relative best results among
the listed methods are shown in
bold
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Table 8 Influence of adding
shifted layers from different
feature maps and prediction
methods of trajectory hypothesis

Adding shifted Fitting Recall Precision

layers from methods

conv4 3 fc7 linear duplicate KCF

� 95.41 99.62

� 96.69 99.59

� � 96.80 99.58

� 96.87 99.61

� 96.62 99.59

� 96.02 99.50

� � 97.59 99.61

SSD Result 95.24 99.59
The relative best results among
the listed methods are shown in
bold

make sure there is no missing detection. To reduce the impact of occlusion, we annotate
prisoners head and shoulder as a target. All the frames have the same size at 960 × 540. In
the following part of this paper, we call this dataset as PM. We randomly sample 900 frames
in different sequences for training and test on the remaining ones (4400 frames).

Experiment settings We first train an original SSD500 model with 500 × 500 inputs.
Like SSD, we choose conv4 3, conv7, conv6 2, conv7 2, conv8 2, conv9 2 and conv10 2
to predict both locations and confidences. In PM, there are many small objects whose size
are around 20×20. Note that the input image needs to be resized into a fixed size 500×500,
so the real size of the smallest objects are actually around 10 × 20. So we set default boxes
with scale smin = 0.04 on conv4 3 and smax = 0.4 on conv9 2. We use batch size of 8 and
stated the learning rate at 10−3 for the first 10k iterations. We then decreased it to 10−4 for
another 10k iterations. Last we finetune the Shifted SSD model shown in the bottom part of
Fig. 4 using the pretrained SSD500 model.

Results analysis Table 8 shows that by adding shifted layers before conv7 layer will sig-
nificantly improve recall while the precision is almost the same. However, adding shifted
layers before conv4 3 may have little effect and we believe it is because conv4 3 is effective
only for the smallest objects which will not have large impact on recall on PM dataset.

Then trajectory hypothesis is added to help with detection in video sequences. Table 8
shows that using linear poly fit method is better than just duplicate the detections in last
frame as predicted results. And KCF is the worst and slowest. Finally, by combining Shifted
SSD using conv7 and trajectory hypothesis with linear poly fit method, we achieve the
performance of recall 97.59%, precision 99.61% and 37 fps on a Titan X (Pascal). Its SSD
counterpart gets recall of 95.24%, precision of 99.59% and 41 fps on a Titan X (Pascal).

7 Conclusion

We investigate the issues of small object detection and propose a novel Shifted SSD to solve
these problems. Our algorithm circularly shifts lower layers of feature maps to get auxiliary
feature maps to mitigate the influence of discreteness of anchor boxes method. Additionally,
obtaining more accurate locations especially for small objects, two novel methods called
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SNMS and IoU-Prediction are proposed. For video dataset, we utilize trajectory hypothesis
to enhance the continuity of detection results. Our algorithm can be generalized to other
deep CNN based methods that use anchor boxes mechanism to improve the performance of
small object detection.
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